3cos x = 1 for 0<x<360
MathBot Answer:
\(x = \arctan{\left(2 \sqrt{2} \right)}\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 2 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 4 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 6 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 8 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 10 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 12 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 14 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 16 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 18 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 20 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 22 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 24 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 26 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 28 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 30 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 32 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 34 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 36 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 38 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 40 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 42 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 44 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 46 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 48 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 50 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 52 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 54 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 56 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 58 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 60 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 62 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 64 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 66 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 68 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 70 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 72 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 74 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 76 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 78 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 80 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 82 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 84 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 86 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 88 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 90 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 92 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 94 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 96 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 98 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 100 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 102 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 104 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 106 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 108 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 110 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 112 \pi\), \(x = \arctan{\left(2 \sqrt{2} \right)} + 114 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 2 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 4 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 6 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 8 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 10 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 12 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 14 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 16 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 18 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 20 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 22 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 24 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 26 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 28 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 30 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 32 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 34 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 36 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 38 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 40 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 42 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 44 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 46 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 48 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 50 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 52 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 54 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 56 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 58 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 60 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 62 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 64 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 66 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 68 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 70 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 72 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 74 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 76 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 78 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 80 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 82 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 84 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 86 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 88 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 90 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 92 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 94 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 96 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 98 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 100 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 102 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 104 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 106 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 108 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 110 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 112 \pi\), \(x = - \arctan{\left(2 \sqrt{2} \right)} + 114 \pi\) are the solutions to the equation \(3 \cos\left( x \right) = 1\) that satisfy the inequality \(0 < x < 360\).