1000*x^90=200000 find x

asked by guest
on Nov 17, 2024 at 9:44 am



You asked:

Solve the equation 1000x90=2000001000 {x}^{90} = 200000 for the unknown xx.

MathBot Answer:

The solutions are given by the formula: x=230545cos(πk45)+230545sin(πk45)ix = \sqrt[30]{2} \cdot \sqrt[45]{5} \cos{\left(\frac{\pi k}{45} \right)} + \sqrt[30]{2} \cdot \sqrt[45]{5} \sin{\left(\frac{\pi k}{45} \right)} i where kk is an integer in 0k<900 \le k < 90.

There are 22 real solutions.

There are 8888 solutions with nonzero imaginary part.


Real solutions: x=2305451.0606376x=2305451.0606376\begin{aligned}x &= \sqrt[30]{2} \cdot \sqrt[45]{5} \\&\approx 1.0606376\\x &= - \sqrt[30]{2} \cdot \sqrt[45]{5} \\&\approx -1.0606376\end{aligned}


Solutions with nonzero imaginary part (88 of 8888 displayed): x=230545cos(π45)+230545isin(π45)1.0580539+0.073986336ix=230545cos(2π45)+230545isin(2π45)1.0503155+0.14761222ix=230545(18+58+358+582)+230545i(3(1454)2+58+582)1.0374601+0.22051895ix=230545cos(4π45)+230545isin(4π45)1.0195503+0.29235133ix=230545cos(π9)+230545isin(π9)0.99667328+0.36275941ix=230545(18+58+358582)+230545i(58582+3(14+54)2)0.96894062+0.43140016ix=230545cos(7π45)+230545isin(7π45)0.93648737+0.49793917ix=230545cos(8π45)+230545isin(8π45)0.89947166+0.56205227i\begin{aligned}x &= \sqrt[30]{2} \cdot \sqrt[45]{5} \cos{\left(\frac{\pi}{45} \right)} + \sqrt[30]{2} \cdot \sqrt[45]{5} i \sin{\left(\frac{\pi}{45} \right)} \\&\approx 1.0580539 + 0.073986336 i\\x &= \sqrt[30]{2} \cdot \sqrt[45]{5} \cos{\left(\frac{2 \pi}{45} \right)} + \sqrt[30]{2} \cdot \sqrt[45]{5} i \sin{\left(\frac{2 \pi}{45} \right)} \\&\approx 1.0503155 + 0.14761222 i\\x &= \sqrt[30]{2} \cdot \sqrt[45]{5} \left(- \frac{1}{8} + \frac{\sqrt{5}}{8} + \frac{\sqrt{3} \sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{2}\right) + \sqrt[30]{2} \cdot \sqrt[45]{5} i \left(\frac{\sqrt{3} \cdot \left(\frac{1}{4} - \frac{\sqrt{5}}{4}\right)}{2} + \frac{\sqrt{\frac{\sqrt{5}}{8} + \frac{5}{8}}}{2}\right) \\&\approx 1.0374601 + 0.22051895 i\\x &= \sqrt[30]{2} \cdot \sqrt[45]{5} \cos{\left(\frac{4 \pi}{45} \right)} + \sqrt[30]{2} \cdot \sqrt[45]{5} i \sin{\left(\frac{4 \pi}{45} \right)} \\&\approx 1.0195503 + 0.29235133 i\\x &= \sqrt[30]{2} \cdot \sqrt[45]{5} \cos{\left(\frac{\pi}{9} \right)} + \sqrt[30]{2} \cdot \sqrt[45]{5} i \sin{\left(\frac{\pi}{9} \right)} \\&\approx 0.99667328 + 0.36275941 i\\x &= \sqrt[30]{2} \cdot \sqrt[45]{5} \cdot \left(\frac{1}{8} + \frac{\sqrt{5}}{8} + \frac{\sqrt{3} \sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{2}\right) + \sqrt[30]{2} \cdot \sqrt[45]{5} i \left(- \frac{\sqrt{\frac{5}{8} - \frac{\sqrt{5}}{8}}}{2} + \frac{\sqrt{3} \cdot \left(\frac{1}{4} + \frac{\sqrt{5}}{4}\right)}{2}\right) \\&\approx 0.96894062 + 0.43140016 i\\x &= \sqrt[30]{2} \cdot \sqrt[45]{5} \cos{\left(\frac{7 \pi}{45} \right)} + \sqrt[30]{2} \cdot \sqrt[45]{5} i \sin{\left(\frac{7 \pi}{45} \right)} \\&\approx 0.93648737 + 0.49793917 i\\x &= \sqrt[30]{2} \cdot \sqrt[45]{5} \cos{\left(\frac{8 \pi}{45} \right)} + \sqrt[30]{2} \cdot \sqrt[45]{5} i \sin{\left(\frac{8 \pi}{45} \right)} \\&\approx 0.89947166 + 0.56205227 i\end{aligned}


ii is the imaginary unit, defined as i2=1i^2 = -1.