7log10(10/9)-2log10(25/24)+3log10(81/81)
asked by guest
on Nov 15, 2024 at 11:50 am
You asked:
Evaluate the expression:
7log10(910)−2log10(2425)+3log10(8181)
MathBot Answer:
7log10(910)−2log10(2425)+3log10(8181)=−log(10)7log(9)−log(10)2log(2425)+7≈0.28484490000386270459705410818355
7log10(910)−2log10(2425)+3log10(8181)=7⋅log(910)−2⋅log(2425)+3⋅log(8181)=7⋅(1−log(10)1⋅log(9))−2⋅log(2425)+3⋅log(8181)=(7−7⋅log(10)1⋅log(9))−2⋅log(2425)+3⋅log(8181)=(7−7⋅log(10)1⋅log(9))−2⋅log(10)1⋅log(2425)+3⋅log(8181)=(7−7⋅log(10)1⋅log(9))−2⋅log(10)1⋅log(2425)+3⋅log(10)1⋅log(8181)=(7−7⋅log(10)1⋅log(9)−2⋅log(10)1⋅log(2425))+3⋅log(10)1⋅log(8181)=7−7⋅log(10)1⋅log(9)−2⋅log(10)1⋅log(2425)+3⋅log(10)1⋅log(8181)