7log10(10/9)-2log10(25/24)+3log10(81/81)

asked by guest
on Nov 15, 2024 at 11:50 am



You asked:

Evaluate the expression: 7log10(109)2log10(2524)+3log10(8181)7 \log_{10}\left( \frac{10}{9} \right) - 2 \log_{10}\left( \frac{25}{24} \right) + 3 \log_{10}\left( \frac{81}{81} \right)

MathBot Answer:

7log10(109)2log10(2524)+3log10(8181)=7log(9)log(10)2log(2524)log(10)+70.284844900003862704597054108183557 \log_{10}\left( \frac{10}{9} \right) - 2 \log_{10}\left( \frac{25}{24} \right) + 3 \log_{10}\left( \frac{81}{81} \right) = - \frac{7 \log{\left(9 \right)}}{\log{\left(10 \right)}} - \frac{2 \log{\left(\frac{25}{24} \right)}}{\log{\left(10 \right)}} + 7 \approx 0.28484490000386270459705410818355


7log10(109)2log10(2524)+3log10(8181)=7log(109)2log(2524)+3log(8181)=7(11log(10)log(9))2log(2524)+3log(8181)=(771log(10)log(9))2log(2524)+3log(8181)=(771log(10)log(9))21log(10)log(2524)+3log(8181)=(771log(10)log(9))21log(10)log(2524)+31log(10)log(8181)=(771log(10)log(9)21log(10)log(2524))+31log(10)log(8181)=771log(10)log(9)21log(10)log(2524)+31log(10)log(8181)\begin{aligned}7 \log_{10}\left( \frac{10}{9} \right) - 2 \log_{10}\left( \frac{25}{24} \right) + 3 \log_{10}\left( \frac{81}{81} \right)&=7 \cdot \log{\left(\frac{10}{9} \right)} - 2 \cdot \log{\left(\frac{25}{24} \right)} + 3 \cdot \log{\left(\frac{81}{81} \right)}\\&=7 \cdot \left(1 - \frac{1}{\log{\left(10 \right)}} \cdot \log{\left(9 \right)}\right) - 2 \cdot \log{\left(\frac{25}{24} \right)} + 3 \cdot \log{\left(\frac{81}{81} \right)}\\&=\left(7 - 7 \cdot \frac{1}{\log{\left(10 \right)}} \cdot \log{\left(9 \right)}\right) - 2 \cdot \log{\left(\frac{25}{24} \right)} + 3 \cdot \log{\left(\frac{81}{81} \right)}\\&=\left(7 - 7 \cdot \frac{1}{\log{\left(10 \right)}} \cdot \log{\left(9 \right)}\right) - 2 \cdot \frac{1}{\log{\left(10 \right)}} \cdot \log{\left(\frac{25}{24} \right)} + 3 \cdot \log{\left(\frac{81}{81} \right)}\\&=\left(7 - 7 \cdot \frac{1}{\log{\left(10 \right)}} \cdot \log{\left(9 \right)}\right) - 2 \cdot \frac{1}{\log{\left(10 \right)}} \cdot \log{\left(\frac{25}{24} \right)} + 3 \cdot \frac{1}{\log{\left(10 \right)}} \cdot \log{\left(\frac{81}{81} \right)}\\&=\left(7 - 7 \cdot \frac{1}{\log{\left(10 \right)}} \cdot \log{\left(9 \right)} - 2 \cdot \frac{1}{\log{\left(10 \right)}} \cdot \log{\left(\frac{25}{24} \right)}\right) + 3 \cdot \frac{1}{\log{\left(10 \right)}} \cdot \log{\left(\frac{81}{81} \right)}\\&=7 - 7 \cdot \frac{1}{\log{\left(10 \right)}} \cdot \log{\left(9 \right)} - 2 \cdot \frac{1}{\log{\left(10 \right)}} \cdot \log{\left(\frac{25}{24} \right)} + 3 \cdot \frac{1}{\log{\left(10 \right)}} \cdot \log{\left(\frac{81}{81} \right)}\end{aligned}