e^(-x * 8.93 * 10^4) = 1.0119*e^(-1.08)

asked by guest
on Jan 11, 2025 at 1:57 pm



You asked:

Investigate the equation: ex8.93104=1.0119e1.08{e}^{-x \cdot 8.93 \cdot {10}^{4}} = 1.0119 {e}^{-1.08}.

MathBot Answer:

The real solution is: x=log(1011910000e2725)893001.1961593105x = - \frac{\log{\left(\frac{10119}{10000 e^{\frac{27}{25}}} \right)}}{89300} \approx 1.1961593 \cdot 10^{-5}


The complex solutions are: {niπ44650log(1011910000e2725)89300  |  nZ}\left\{\frac{n i \pi}{44650} - \frac{\log{\left(\frac{10119}{10000 e^{\frac{27}{25}}} \right)}}{89300}\; \middle|\; n \in \mathbb{Z}\right\}


ee is Euler's number, a mathematical constant that is approximately 2.718282.71828.

ii is the imaginary unit, defined as i2=1i^2 = -1.