cos theta + cot theta sin theta all over cot theta with solution
You asked:
Evaluate the expression: \(\frac{\cos\left( θ \right) + \cot\left( θ \right) \cdot \sin\left( θ \right)}{\cot\left( θ \right)}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{\cos\left( θ \right) + \cot\left( θ \right) \cdot \sin\left( θ \right)}{\cot\left( θ \right)} = \frac{\sin{\left(θ \right)} \cot{\left(θ \right)} + \cos{\left(θ \right)}}{\cot{\left(θ \right)}} \)
Expanded
\[\frac{\cos\left( θ \right) + \cot\left( θ \right) \cdot \sin\left( θ \right)}{\cot\left( θ \right)} = \sin{\left(θ \right)} + \frac{\cos{\left(θ \right)}}{\cot{\left(θ \right)}}\]