cos theta + cot theta sin theta all over cot theta with solution

asked by guest
on Nov 25, 2024 at 3:10 am



You asked:

Evaluate the expression: \(\frac{\cos\left( θ \right) + \cot\left( θ \right) \cdot \sin\left( θ \right)}{\cot\left( θ \right)}\)

MathBot Answer:

Evaluated



\(\displaystyle \frac{\cos\left( θ \right) + \cot\left( θ \right) \cdot \sin\left( θ \right)}{\cot\left( θ \right)} = \frac{\sin{\left(θ \right)} \cot{\left(θ \right)} + \cos{\left(θ \right)}}{\cot{\left(θ \right)}} \)


Expanded

\[\frac{\cos\left( θ \right) + \cot\left( θ \right) \cdot \sin\left( θ \right)}{\cot\left( θ \right)} = \sin{\left(θ \right)} + \frac{\cos{\left(θ \right)}}{\cot{\left(θ \right)}}\]