16 sin^4x + 2sin^4y + 4 sin^4z - 16 sinxsinysinz

asked by guest
on Mar 30, 2025 at 2:35 am



You asked:

Evaluate the expression: 16sin(x)4+2sin(y)4+4sin(z)416sin(x)sin(y)sin(z)16 {\sin\left( x \right)}^{4} + 2 {\sin\left( y \right)}^{4} + 4 {\sin\left( z \right)}^{4} - 16 \sin\left( x \right) \sin\left( y \right) \sin\left( z \right)

MathBot Answer:

16sin(x)4+2sin(y)4+4sin(z)416sin(x)sin(y)sin(z)=16sin4(x)16sin(x)sin(y)sin(z)+2sin4(y)+4sin4(z)16 {\sin\left( x \right)}^{4} + 2 {\sin\left( y \right)}^{4} + 4 {\sin\left( z \right)}^{4} - 16 \sin\left( x \right) \sin\left( y \right) \sin\left( z \right) = 16 \sin^{4}{\left(x \right)} - 16 \sin{\left(x \right)} \sin{\left(y \right)} \sin{\left(z \right)} + 2 \sin^{4}{\left(y \right)} + 4 \sin^{4}{\left(z \right)}