Solve for x:

pi*y=(arccos(x)-x*sqrt(1-x^2))

asked by guest
on Mar 29, 2025 at 5:02 pm



You asked:

Solve the equation πy=arccos(x)x1x2\pi y = \arccos\left( x \right) - x \sqrt{1 - {x}^{2}} for the unknown xx.

MathBot Answer:

x4x2+y2π22yπarccos(x)+arccos2(x)=0<xx<x^{4} - x^{2} + y^{2} \pi^{2} - 2 y \pi \arccos{\left(x \right)} + \arccos^{2}{\left(x \right)} = 0 \wedge -\infty < x \wedge x < \infty