(700-0.1TWm^-3)(0.0004m)^2/62.52Wm^-1

asked by guest
on Nov 13, 2024 at 1:36 am



You asked:

Evaluate the expression: \(\frac{\left(700 - 0.1 T W \cdot {m}^{-3}\right) \cdot {\left( 0.0004 m \right)}^{2}}{62.52 W \cdot {m}^{-1}}\)

MathBot Answer:

Evaluated



\(\displaystyle \frac{\left(700 - 0.1 T W \cdot {m}^{-3}\right) \cdot {\left( 0.0004 m \right)}^{2}}{62.52 W \cdot {m}^{-1}} = \frac{m^{3} \left(- \frac{T W}{10 m^{3}} + 700\right)}{390750000 W} \)


Expanded

\[\frac{\left(700 - 0.1 T W \cdot {m}^{-3}\right) \cdot {\left( 0.0004 m \right)}^{2}}{62.52 W \cdot {m}^{-1}} = - \frac{T}{3907500000} + \frac{7 m^{3}}{3907500 W}\]


Factored

\[\frac{\left(700 - 0.1 T W \cdot {m}^{-3}\right) \cdot {\left( 0.0004 m \right)}^{2}}{62.52 W \cdot {m}^{-1}} = - \frac{T W - 7000 m^{3}}{3907500000 W}\]