(700-0.1TWm^-3)(0.0004m)^2/62.52Wm^-1
You asked:
Evaluate the expression: \(\frac{\left(700 - 0.1 T W \cdot {m}^{-3}\right) \cdot {\left( 0.0004 m \right)}^{2}}{62.52 W \cdot {m}^{-1}}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{\left(700 - 0.1 T W \cdot {m}^{-3}\right) \cdot {\left( 0.0004 m \right)}^{2}}{62.52 W \cdot {m}^{-1}} = \frac{m^{3} \left(- \frac{T W}{10 m^{3}} + 700\right)}{390750000 W} \)
Expanded
\[\frac{\left(700 - 0.1 T W \cdot {m}^{-3}\right) \cdot {\left( 0.0004 m \right)}^{2}}{62.52 W \cdot {m}^{-1}} = - \frac{T}{3907500000} + \frac{7 m^{3}}{3907500 W}\]
Factored
\[\frac{\left(700 - 0.1 T W \cdot {m}^{-3}\right) \cdot {\left( 0.0004 m \right)}^{2}}{62.52 W \cdot {m}^{-1}} = - \frac{T W - 7000 m^{3}}{3907500000 W}\]