tan $^{-1}$ ( $\frac{120}{119}$ ) $\pi$ /4
You asked:
Evaluate the expression: \(\frac{\arctan\left( \frac{120}{119} \right) \cdot \pi}{4}\)
MathBot Answer:
\[\frac{\arctan\left( \frac{120}{119} \right) \cdot \pi}{4} = \frac{\pi \arctan{\left(\frac{120}{119} \right)}}{4} \approx 0.6201364406756297399234243136266\]
\[\begin{aligned}\frac{\arctan\left( \frac{120}{119} \right) \cdot \pi}{4}& = \arctan{\left(\frac{120}{119} \right)} \cdot \frac{\pi}{4}\\& = \frac{\pi}{4} \cdot \arctan{\left(\frac{120}{119} \right)}\end{aligned}\]