tan 1^{-1} ( 120119\frac{120}{119} ) π\pi /4

asked by guest
on Nov 22, 2024 at 6:33 pm



You asked:

Evaluate the expression: arctan(120119)π4\frac{\arctan\left( \frac{120}{119} \right) \cdot \pi}{4}

MathBot Answer:

arctan(120119)π4=πarctan(120119)40.6201364406756297399234243136266\frac{\arctan\left( \frac{120}{119} \right) \cdot \pi}{4} = \frac{\pi \arctan{\left(\frac{120}{119} \right)}}{4} \approx 0.6201364406756297399234243136266


arctan(120119)π4=arctan(120119)π4=π4arctan(120119)\begin{aligned}\frac{\arctan\left( \frac{120}{119} \right) \cdot \pi}{4}&=\arctan{\left(\frac{120}{119} \right)} \cdot \frac{\pi}{4}\\&=\frac{\pi}{4} \cdot \arctan{\left(\frac{120}{119} \right)}\end{aligned}