\frac{b + x}{b^2 + bx + x^2} - \frac{2x^3}{b^4 + b^2x^2 + x^4}.
You asked:
Evaluate the expression: \(\frac{b + x}{{b}^{2} + b x + {x}^{2}} - \frac{2 {x}^{3}}{{b}^{4} + {b}^{2} {x}^{2} + {x}^{4}}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{b + x}{{b}^{2} + b x + {x}^{2}} - \frac{2 {x}^{3}}{{b}^{4} + {b}^{2} {x}^{2} + {x}^{4}} = - \frac{2 x^{3}}{b^{4} + b^{2} x^{2} + x^{4}} + \frac{b + x}{b^{2} + b x + x^{2}} \)
Expanded
\[\frac{b + x}{{b}^{2} + b x + {x}^{2}} - \frac{2 {x}^{3}}{{b}^{4} + {b}^{2} {x}^{2} + {x}^{4}} = \frac{b}{b^{2} + b x + x^{2}} - \frac{2 x^{3}}{b^{4} + b^{2} x^{2} + x^{4}} + \frac{x}{b^{2} + b x + x^{2}}\]
Factored
\[\frac{b + x}{{b}^{2} + b x + {x}^{2}} - \frac{2 {x}^{3}}{{b}^{4} + {b}^{2} {x}^{2} + {x}^{4}} = \frac{b - x}{b^{2} - b x + x^{2}}\]