(20)/(1+125e^(-0.8(5.657)))
You asked:
MathBot Answer:
\[\frac{20}{1 + 125 {e}^{-\left( 0.8 \cdot 5.657 \right)}} = \frac{20}{1 + \frac{125}{e^{\frac{5657}{1250}}}} \approx 8.49788443892849330710185044222462\]
\[\begin{aligned}\frac{20}{1 + 125 {e}^{-\left( 0.8 \cdot 5.657 \right)}}& = 20 \cdot \frac{1}{1 + 125 \cdot e^{- \frac{8}{10} \cdot \left(5 + \frac{657}{1000}\right)}}\\& = 20 \cdot \frac{1}{1 + 125 \cdot e^{- \frac{8}{10} \cdot \frac{5657}{1000}}}\\& = 20 \cdot \frac{1}{1 + 125 \cdot e^{- \frac{4}{5} \cdot \frac{5657}{1000}}}\\& = 20 \cdot \frac{1}{1 + 125 \cdot e^{- \frac{5657}{1250}}}\\& = 20 \cdot \frac{1}{1 + 125 \cdot \frac{1}{e^{\frac{5657}{1250}}}}\\& = 20 \cdot \frac{1}{1 + 125 \cdot e^{- \frac{5657}{1250}}}\end{aligned}\]
\(e\) is Euler's number, a mathematical constant that is approximately \(2.71828\).