\log _(4)(9-q)=\log _(4)(2q+18)
You asked:
Solve the equation \(\log_{4}\left( 9 - q \right) = \log_{4}\left( 2 q + 18 \right)\) for the variable \(q\).
MathBot Answer:
The complex solutions are: \[\left\{q\; \middle|\; q \in \mathbb{R} \wedge - \left(9 - q\right)^{\frac{1}{\log{\left(2 \right)}}} + \left(2 q + 18\right)^{\frac{1}{\log{\left(2 \right)}}} = 0 \right\} \setminus \left\{-9\right\}\]