lim(x→-8) (2 + ∛x)/(3 - √(1 - x))

asked by guest
on Nov 22, 2024 at 10:04 am



You asked:

Evaluate the expression: limx82+x331x\lim_{x \to -8}{\frac{2 + \sqrt[3]{x}}{3 - \sqrt{1 - x}}}

MathBot Answer:

The two-sided limit limx82+x331x\lim_{x \to -8}{\frac{2 + \sqrt[3]{x}}{3 - \sqrt{1 - x}}} does not exist because the directional limits from the right and the left result in different values.


Right limit:
limx8+(x3+231x)=sign(2+213)\displaystyle\lim_{x \to -8^+}\left(\frac{\sqrt[3]{x} + 2}{3 - \sqrt{1 - x}}\right) = \infty \operatorname{sign}{\left(2 + 2 \sqrt[3]{-1} \right)}


Left limit:
limx8(x3+231x)=sign(2+213)\displaystyle\lim_{x \to -8^-}\left(\frac{\sqrt[3]{x} + 2}{3 - \sqrt{1 - x}}\right) = - \infty \operatorname{sign}{\left(2 + 2 \sqrt[3]{-1} \right)}

    • Axis Limits
    • min x
    • max x
    • min y
    • max y
  • Update Axis Limits
Close Controls