2.49779248265791420
1.09131128190107020
1.36671371455898421
2.5278683675684418
5720132284446159481538
1514031
54674141822471
15113.7597
509966.8123
MathBot Answer:
Original numbers in ascending order: \(1.09131128190107020\), \(1.36671371455898421\), \(2.49779248265791420\), \(2.5278683675684418\), \(15113.7597\), \(509966.8123\), \(1514031\), \(54674141822471\), \(5720132284446159481538\)
Sum: \( \frac{572013233912030334312805568584668641041}{100000000000000000} \approx 5.7201323391203 \cdot 10^{21} \)
Mean: \( \frac{572013233912030334312805568584668641041}{900000000000000000} \approx 6.35570259902256 \cdot 10^{20} \)
Sample standard deviation: \( \frac{\sqrt{327199132733774082969934727852564099603691514185753655562230289351809738999786}}{300000000000000000} \approx 1.90671075920396 \cdot 10^{21} \)
Median: \( \frac{151137597}{10000} \approx 15113.7597 \)
Mode: No mode
Sum: \( \frac{572013233912030334312805568584668641041}{100000000000000000} \approx 5.7201323391203 \cdot 10^{21} \)
Mean: \( \frac{572013233912030334312805568584668641041}{900000000000000000} \approx 6.35570259902256 \cdot 10^{20} \)
Sample standard deviation: \( \frac{\sqrt{327199132733774082969934727852564099603691514185753655562230289351809738999786}}{300000000000000000} \approx 1.90671075920396 \cdot 10^{21} \)
Median: \( \frac{151137597}{10000} \approx 15113.7597 \)
Mode: No mode