2-\left(\ \frac{\ 1}{2}-\left(\ \frac{\ 3}{4}\right)\cdot \ \frac{\ 8}{2}+1\right)-\left(\ \frac{\ 4}{3}\right)^2

asked by guest
on Nov 26, 2024 at 12:23 pm



You asked:

Evaluate the expression: \(2 - \left(\frac{1}{2} - \frac{3}{4} \cdot \frac{8}{2} + 1\right) - {\left( \frac{4}{3} \right)}^{2}\)

MathBot Answer:

\[2 - \left(\frac{1}{2} - \frac{3}{4} \cdot \frac{8}{2} + 1\right) - {\left( \frac{4}{3} \right)}^{2} = \frac{31}{18} = 1.7\overline{2}\]


\[\begin{aligned}2 - \left(\frac{1}{2} - \frac{3}{4} \cdot \frac{8}{2} + 1\right) - {\left( \frac{4}{3} \right)}^{2}& = 2 - \left(\frac{1}{2} - \frac{3}{4} \cdot \frac{8}{2} + 1\right) - \left(\frac{4}{3}\right)^{2}\\& = 2 - \left(\frac{1}{2} - 3 + 1\right) - \left(\frac{4}{3}\right)^{2}\\& = 2 - \left(- \frac{5}{2} + 1\right) - \left(\frac{4}{3}\right)^{2}\\& = 2 - - \frac{3}{2} - \left(\frac{4}{3}\right)^{2}\\& = 2 + \frac{3}{2} - \left(\frac{4}{3}\right)^{2}\\& = 2 + \frac{3}{2} - \frac{16}{9}\\& = \frac{7}{2} - \frac{16}{9}\\& = \frac{31}{18}\end{aligned}\]