lim n -> ∞ root(n ^ 2, 3) * (sqrt(n + 1) + sqrt(n - 1) - 2sqrt(n))
You asked:
Evaluate the expression: \(\lim_{n \to \infty}{\sqrt[3]{{n}^{2}} \cdot \left(\sqrt{n + 1} + \sqrt{n - 1} - 2 \cdot \sqrt{n}\right)}\)
MathBot Answer:
\[\lim_{n \to \infty}{\sqrt[3]{{n}^{2}} \cdot \left(\sqrt{n + 1} + \sqrt{n - 1} - 2 \cdot \sqrt{n}\right)} = 0\]