7 over 3-x equals 5 over x+3 + 4 over x to the power 2 - 9

asked by guest
on Mar 30, 2025 at 12:03 am



You asked:

Solve the equation 73x=5x+3+4x29\frac{7}{3} - x = \frac{5}{x} + 3 + \frac{4}{{x}^{2}} - 9 for the variable xx.

MathBot Answer:

The 3 solutions to the equation are: x=259+1410cos(arctan(2719071118209)3)97.6069099x=710cos(arctan(2719071118209)3)18+490re(1(123i2)182091458+190711i543)81+730sin(arctan(2719071118209)3)18+259+i(730cos(arctan(2719071118209)3)18710sin(arctan(2719071118209)3)18+490im(1(123i2)182091458+190711i543)81)1.174236+2.010142ix=490re(1(12+3i2)182091458+190711i543)81710cos(arctan(2719071118209)3)18730sin(arctan(2719071118209)3)18+259+i(490im(1(12+3i2)182091458+190711i543)81710sin(arctan(2719071118209)3)18+730cos(arctan(2719071118209)3)18)0.4478126+2.010143i\begin{aligned}x &= \frac{25}{9} + \frac{14 \sqrt{10} \cos{\left(\frac{\arctan{\left(\frac{27 \sqrt{190711}}{18209} \right)}}{3} \right)}}{9} \approx 7.6069099\\x &= - \frac{7 \sqrt{10} \cos{\left(\frac{\arctan{\left(\frac{27 \sqrt{190711}}{18209} \right)}}{3} \right)}}{18} + \frac{490 \operatorname{re}{\left(\frac{1}{\left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{18209}{1458} + \frac{\sqrt{190711} i}{54}}}\right)}}{81} + \frac{7 \sqrt{30} \sin{\left(\frac{\arctan{\left(\frac{27 \sqrt{190711}}{18209} \right)}}{3} \right)}}{18} + \frac{25}{9} + i \left(- \frac{7 \sqrt{30} \cos{\left(\frac{\arctan{\left(\frac{27 \sqrt{190711}}{18209} \right)}}{3} \right)}}{18} - \frac{7 \sqrt{10} \sin{\left(\frac{\arctan{\left(\frac{27 \sqrt{190711}}{18209} \right)}}{3} \right)}}{18} + \frac{490 \operatorname{im}{\left(\frac{1}{\left(- \frac{1}{2} - \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{18209}{1458} + \frac{\sqrt{190711} i}{54}}}\right)}}{81}\right) \approx 1.174236 + 2.0 \cdot 10^{-142} i\\x &= \frac{490 \operatorname{re}{\left(\frac{1}{\left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{18209}{1458} + \frac{\sqrt{190711} i}{54}}}\right)}}{81} - \frac{7 \sqrt{10} \cos{\left(\frac{\arctan{\left(\frac{27 \sqrt{190711}}{18209} \right)}}{3} \right)}}{18} - \frac{7 \sqrt{30} \sin{\left(\frac{\arctan{\left(\frac{27 \sqrt{190711}}{18209} \right)}}{3} \right)}}{18} + \frac{25}{9} + i \left(\frac{490 \operatorname{im}{\left(\frac{1}{\left(- \frac{1}{2} + \frac{\sqrt{3} i}{2}\right) \sqrt[3]{\frac{18209}{1458} + \frac{\sqrt{190711} i}{54}}}\right)}}{81} - \frac{7 \sqrt{10} \sin{\left(\frac{\arctan{\left(\frac{27 \sqrt{190711}}{18209} \right)}}{3} \right)}}{18} + \frac{7 \sqrt{30} \cos{\left(\frac{\arctan{\left(\frac{27 \sqrt{190711}}{18209} \right)}}{3} \right)}}{18}\right) \approx -0.4478126 + 2.0 \cdot 10^{-143} i\end{aligned}


ii is the imaginary unit, defined as i2=1i^2 = -1.