3tan^{2}x-7tanx=-2

asked by guest
on Mar 31, 2025 at 1:20 pm



You asked:

Solve the equation 3tan(x)27tan(x)=23 {\tan\left( x \right)}^{2} - 7 \tan\left( x \right) = -2 for the variable xx.

MathBot Answer:

The real solutions are: x={2πn+arctan(13)  |  nZ}{6.2831853n+0.32175055  |  nZ}x={2πn+arctan(2)  |  nZ}{6.2831853n+1.1071487  |  nZ}x={π+2πn+arctan(13)  |  nZ}{6.2831853n+3.4633432  |  nZ}x={π+2πn+arctan(2)  |  nZ}{6.2831853n+4.2487414  |  nZ}\begin{aligned}x &= \left\{2 \pi n + \arctan{\left(\frac{1}{3} \right)}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 0.32175055\; \middle|\; n \in \mathbb{Z}\right\}\\x &= \left\{2 \pi n + \arctan{\left(2 \right)}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 1.1071487\; \middle|\; n \in \mathbb{Z}\right\}\\x &= \left\{\pi + 2 \pi n + \arctan{\left(\frac{1}{3} \right)}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 3.4633432\; \middle|\; n \in \mathbb{Z}\right\}\\x &= \left\{\pi + 2 \pi n + \arctan{\left(2 \right)}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 4.2487414\; \middle|\; n \in \mathbb{Z}\right\}\end{aligned}