[1-tan(x/2)][1-sin x]/[1+tan(x/2)][ $\pi$-2x]^3
x=n/2
You asked:
Investigate the equation: \(\frac{\left(1 - \tan\left( \frac{x}{2} \right)\right) \cdot \left(1 - \sin\left( x \right)\right)}{\left(1 + \tan\left( \frac{x}{2} \right)\right) \cdot {\left( \pi - 2 x \right)}^{3} \cdot x} = \frac{n}{2}\).