PV = 75000 * [(1 - (1 + 0.09)^(-2)) / 0.09]
You asked:
Investigate the equation: \(P V = 75000 \cdot \frac{1 - {\left( 1 + 0.09 \right)}^{-2}}{0.09}\).
MathBot Answer:
The graph of the equation \(P V = 75000 \cdot \frac{1 - {\left( 1 + 0.09 \right)}^{-2}}{0.09}\) is a hyperbola.
The coordinates of its foci are: \(\left(- \frac{1000 \sqrt{3135}}{109}, - \frac{1000 \sqrt{3135}}{109}\right)\) and \(\left(\frac{1000 \sqrt{3135}}{109}, \frac{1000 \sqrt{3135}}{109}\right)\).
The coordinates of its vertices are: \(\left(- \frac{500 \sqrt{6270}}{109}, - \frac{500 \sqrt{6270}}{109}\right)\) and \(\left(\frac{500 \sqrt{6270}}{109}, \frac{500 \sqrt{6270}}{109}\right)\).
The asymptotes have equations: \(- \frac{1000 \sqrt{6270} P}{109} = 0\) and \(- \frac{1000 \sqrt{6270} V}{109} = 0\).