PV = 75000 * [(1 - (1 + 0.09)^(-2)) / 0.09]

asked by guest
on Dec 08, 2023 at 4:47 am



You asked:

Investigate the equation: \(P V = 75000 \cdot \frac{1 - {\left( 1 + 0.09 \right)}^{-2}}{0.09}\).

MathBot Answer:

The graph of the equation \(P V = 75000 \cdot \frac{1 - {\left( 1 + 0.09 \right)}^{-2}}{0.09}\) is a hyperbola.


The coordinates of its foci are: \(\left(- \frac{1000 \sqrt{3135}}{109}, - \frac{1000 \sqrt{3135}}{109}\right)\) and \(\left(\frac{1000 \sqrt{3135}}{109}, \frac{1000 \sqrt{3135}}{109}\right)\).

The coordinates of its vertices are: \(\left(- \frac{500 \sqrt{6270}}{109}, - \frac{500 \sqrt{6270}}{109}\right)\) and \(\left(\frac{500 \sqrt{6270}}{109}, \frac{500 \sqrt{6270}}{109}\right)\).

The asymptotes have equations: \(- \frac{1000 \sqrt{6270} P}{109} = 0\) and \(- \frac{1000 \sqrt{6270} V}{109} = 0\).