- 2 log 𝑧 − log(7𝑧 − 1) = 0
You asked:
MathBot Answer:
The 3 solutions to the equation are: \[\begin{aligned}z &= \frac{1}{21} + \sqrt[3]{\frac{1325}{18522} + \frac{\sqrt{3981}}{882}} + \frac{1}{441 \sqrt[3]{\frac{1325}{18522} + \frac{\sqrt{3981}}{882}}} \approx 0.57497572\\z &= - \frac{\sqrt[3]{\frac{\sqrt{3981}}{882} + \frac{1325}{18522}}}{2} - \frac{1}{882 \sqrt[3]{\frac{\sqrt{3981}}{882} + \frac{1325}{18522}}} + \frac{1}{21} + i \left(- \frac{\sqrt{3}}{882 \sqrt[3]{\frac{\sqrt{3981}}{882} + \frac{1325}{18522}}} + \frac{\sqrt{3} \sqrt[3]{\frac{\sqrt{3981}}{882} + \frac{1325}{18522}}}{2}\right) \approx -0.21605929 + 0.44919492 i\\z &= - \frac{\sqrt[3]{\frac{\sqrt{3981}}{882} + \frac{1325}{18522}}}{2} - \frac{1}{882 \sqrt[3]{\frac{\sqrt{3981}}{882} + \frac{1325}{18522}}} + \frac{1}{21} + i \left(- \frac{\sqrt{3} \sqrt[3]{\frac{\sqrt{3981}}{882} + \frac{1325}{18522}}}{2} + \frac{\sqrt{3}}{882 \sqrt[3]{\frac{\sqrt{3981}}{882} + \frac{1325}{18522}}}\right) \approx -0.21605929 -0.44919492 i\end{aligned}\]
\(i\) is the imaginary unit, defined as \(i^2 = -1\).