sinx-cosx=0

find x

asked by guest
on Nov 27, 2024 at 10:37 am



You asked:

Solve the equation \[\sin\left( x \right) - \cos\left( x \right) = 0\] for the unknown \(x\).

MathBot Answer:

The real solutions are: \[\begin{aligned}x &= \left\{\frac{\pi \left(5 + 8 n\right)}{4}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 3.9269908\; \middle|\; n \in \mathbb{Z}\right\}\\x &= \left\{\frac{\pi \left(1 + 8 n\right)}{4}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 0.78539816\; \middle|\; n \in \mathbb{Z}\right\}\end{aligned}\]