(1/3) * x + (1/2) * y = 1/3;
(1/3) * (x - ΒΌ) * y = 1/12
You asked:
Solve the system of equations:\[\begin{aligned}\frac{1}{3} \cdot x + \frac{1}{2} \cdot y &= \frac{1}{3}\\\frac{1}{3} \cdot \left(x - \frac{1}{4}\right) \cdot y &= \frac{1}{12}\end{aligned}\]
MathBot Answer:
The system of equations has \(2\) solutions.
\[x = \frac{5}{8} - \frac{\sqrt{15} i}{8}, y = \frac{1}{4} + \frac{\sqrt{15} i}{12}\]\[x = \frac{5}{8} + \frac{\sqrt{15} i}{8}, y = \frac{1}{4} - \frac{\sqrt{15} i}{12}\]
\(i\) is the imaginary unit, defined as \(i^2 = -1\).