(-3, -3) (0, 1)

asked by guest
on Apr 02, 2025 at 8:51 pm



You asked:

Find the equation of the line through (3,3)(-3, -3) and (0,1)(0, 1).

MathBot Answer:

Standard Form:

Ax+By+C=0 \begin{aligned}Ax + By + C = 0\end{aligned} Slope=AB=y2y1x2x1AB=1303AB=43A=4,B=3 \begin{aligned} \text{Slope} &= -\frac{A}{B} \\ &= \frac{y_2-y_1}{x_2-x_1} \\ -\frac{A}{B} &= \frac{ 1 - -3 }{ 0 - -3 } \\ -\frac{A}{B} &= \frac{ 4 }{ 3 } \\ A =& -4, B = 3 \end{aligned} 4x+3y+C=04(3)+3(3)+C=0++C=012+C=9C=3 \begin{aligned} -4 x + 3 y + C &= 0 \\ -4(-3) + 3(-3) + C &= 0 \\ + + C &= 0 \\ 12 + C &= 9 \\ C &= 3 \end{aligned} An equation of the line in standard form is: 4x+3y3=0 - 4 x + 3 y - 3 = 0


Slope-Intercept Form:

y=mx+b y = m x + b Slope=y2y1x2x1Slope=1303Slope=43 \begin{aligned} \text{Slope} &= \frac{y_2-y_1}{x_2-x_1} \\ \text{Slope} &= \frac{ 1 - -3 }{ 0 - -3 } \\ \text{Slope} &= \frac{4}{3} \end{aligned} y=43x+b3=43×3+b3=4+bb=1 \begin{aligned} y &= \frac{4}{3} x + b \\ -3 &= \frac{4}{3} \times -3 + b \\ -3 &= -4 + b \\ b &= 1 \end{aligned} The slope-intercept form of the line is: y=4x3+1 y = \frac{4 x}{3} + 1