$\frac{x^2-64}{7x}$ × $\frac{3x^3}{x^2+x-72}$
You asked:
Evaluate the expression: \(\frac{{x}^{2} - 64}{7 x} \cdot \frac{3 \cdot {x}^{3}}{{x}^{2} + x - 72}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{{x}^{2} - 64}{7 x} \cdot \frac{3 \cdot {x}^{3}}{{x}^{2} + x - 72} = \frac{3 x^{2} \left(x^{2} - 64\right)}{7 \left(x^{2} + x - 72\right)} \)
Expanded
\[\frac{{x}^{2} - 64}{7 x} \cdot \frac{3 \cdot {x}^{3}}{{x}^{2} + x - 72} = \frac{3 x^{5}}{7 x^{3} + 7 x^{2} - 504 x} - \frac{192 x^{3}}{7 x^{3} + 7 x^{2} - 504 x}\]
Factored
\[\frac{{x}^{2} - 64}{7 x} \cdot \frac{3 \cdot {x}^{3}}{{x}^{2} + x - 72} = \frac{3 x^{2} \left(x + 8\right)}{7 \left(x + 9\right)}\]