[-5cos(180)-3sin(180)]-[-5cos(90)-3sin(90)]

asked by guest
on Dec 28, 2024 at 11:00 am



You asked:

Evaluate the expression: \(-\left( 5 \cos\left( 180 \right) \right) - 3 \sin\left( 180 \right) - \left(-\left( 5 \cos\left( 90 \right) \right) - 3 \sin\left( 90 \right)\right)\)

MathBot Answer:

\[-\left( 5 \cos\left( 180 \right) \right) - 3 \sin\left( 180 \right) - \left(-\left( 5 \cos\left( 90 \right) \right) - 3 \sin\left( 90 \right)\right) = 5 \cos{\left(90 \right)} - 3 \sin{\left(180 \right)} + 3 \sin{\left(90 \right)} - 5 \cos{\left(180 \right)} \approx 5.83738016264660503780735851147589\]


\[\begin{aligned}-\left( 5 \cos\left( 180 \right) \right) - 3 \sin\left( 180 \right) - \left(-\left( 5 \cos\left( 90 \right) \right) - 3 \sin\left( 90 \right)\right)& = - 5 \cdot \cos{\left(180 \right)} - 3 \cdot \sin{\left(180 \right)} - \left(- 5 \cdot \cos{\left(90 \right)} - 3 \cdot \sin{\left(90 \right)}\right)\\& = -5 \cdot \cos{\left(180 \right)} - 3 \cdot \sin{\left(180 \right)} - \left(- 5 \cdot \cos{\left(90 \right)} - 3 \cdot \sin{\left(90 \right)}\right)\\& = -5 \cdot \cos{\left(180 \right)} - 3 \cdot \sin{\left(180 \right)} - \left(-5 \cdot \cos{\left(90 \right)} - 3 \cdot \sin{\left(90 \right)}\right)\\& = -5 \cdot \cos{\left(180 \right)} - 3 \cdot \sin{\left(180 \right)} + \left(3 \cdot \sin{\left(90 \right)} + 5 \cdot \cos{\left(90 \right)}\right)\\& = \left(-5 \cdot \cos{\left(180 \right)} - 3 \cdot \sin{\left(180 \right)}\right) + \left(3 \cdot \sin{\left(90 \right)} + 5 \cdot \cos{\left(90 \right)}\right)\\& = -5 \cdot \cos{\left(180 \right)} - 3 \cdot \sin{\left(180 \right)} + 3 \cdot \sin{\left(90 \right)} + 5 \cdot \cos{\left(90 \right)}\end{aligned}\]