123334556666-23354322355

asked by guest
on Nov 13, 2024 at 10:54 pm



You asked:

Evaluate the expression: 12333455666623354322355123334556666 - 23354322355

MathBot Answer:

12333455666623354322355=99980234311 123334556666 - 23354322355=99980234311


1021131231231345566660023354322355099980234311 \begin{aligned} \overset{\mathtt{{\scriptscriptstyle 0}}}{\cancel{\mathtt{1}}}\overset{\mathtt{{\scriptscriptstyle 11}}}{\cancel{\mathtt{2}}}\overset{\mathtt{{\scriptscriptstyle 12}}}{\cancel{\mathtt{3}}}\overset{\mathtt{{\scriptscriptstyle 12}}}{\cancel{\mathtt{3}}}\overset{\mathtt{{\scriptscriptstyle 13}}}{\cancel{\mathtt{3}}}\mathtt{4}\mathtt{5}\mathtt{5}\mathtt{6}\mathtt{6}\mathtt{6}\mathtt{6}\\ \mathtt{-\phantom{0}}\phantom{0}\mathtt{2}\mathtt{3}\mathtt{3}\mathtt{5}\mathtt{4}\mathtt{3}\mathtt{2}\mathtt{2}\mathtt{3}\mathtt{5}\mathtt{5}\\ \hline \mathtt{0}\mathtt{9}\mathtt{9}\mathtt{9}\mathtt{8}\mathtt{0}\mathtt{2}\mathtt{3}\mathtt{4}\mathtt{3}\mathtt{1}\mathtt{1} \end{aligned}

11 is the digit in the 10010^{0} place. 6×1005×100=1×1006 \times 10^{0} - 5 \times 10^{0} = 1 \times 10^{0}.

11 is the digit in the 10110^{1} place. 6×1015×101=1×1016 \times 10^{1} - 5 \times 10^{1} = 1 \times 10^{1}.

33 is the digit in the 10210^{2} place. 6×1023×102=3×1026 \times 10^{2} - 3 \times 10^{2} = 3 \times 10^{2}.

44 is the digit in the 10310^{3} place. 6×1032×103=4×1036 \times 10^{3} - 2 \times 10^{3} = 4 \times 10^{3}.

33 is the digit in the 10410^{4} place. 5×1042×104=3×1045 \times 10^{4} - 2 \times 10^{4} = 3 \times 10^{4}.

22 is the digit in the 10510^{5} place. 5×1053×105=2×1055 \times 10^{5} - 3 \times 10^{5} = 2 \times 10^{5}.

00 is the digit in the 10610^{6} place. 4×1064×106=0×1064 \times 10^{6} - 4 \times 10^{6} = 0 \times 10^{6}.

Borrow 10810^{8}, resulting in 22 in the 10810^{8} place, and 1313 in the 10710^{7} place.

88 is the digit in the 10710^{7} place. 13×1075×107=8×10713 \times 10^{7} - 5 \times 10^{7} = 8 \times 10^{7}.

Borrow 10910^{9}, resulting in 22 in the 10910^{9} place, and 1212 in the 10810^{8} place.

99 is the digit in the 10810^{8} place. 12×1083×108=9×10812 \times 10^{8} - 3 \times 10^{8} = 9 \times 10^{8}.

Borrow 101010^{10}, resulting in 11 in the 101010^{10} place, and 1212 in the 10910^{9} place.

99 is the digit in the 10910^{9} place. 12×1093×109=9×10912 \times 10^{9} - 3 \times 10^{9} = 9 \times 10^{9}.

Borrow 101110^{11}, resulting in 00 in the 101110^{11} place, and 1111 in the 101010^{10} place.

99 is the digit in the 101010^{10} place. 11×10102×1010=9×101011 \times 10^{10} - 2 \times 10^{10} = 9 \times 10^{10}.

00 is the digit in the 101110^{11} place. 0×10110×1011=0×10110 \times 10^{11} - 0 \times 10^{11} = 0 \times 10^{11}.