if y= (csc x -cot x) (csc x + cot x ) , then dy/dx = ??
asked by guest on Nov 10, 2024 at 1:48 am
MathBot Answer:
ddxy(x)=(−cot(x)+csc(x))(−cot2(x)−cot(x)csc(x)−1)+(cot(x)+csc(x))(cot2(x)−cot(x)csc(x)+1)\frac{d}{d x} y{\left(x \right)} = \left(- \cot{\left(x \right)} + \csc{\left(x \right)}\right) \left(- \cot^{2}{\left(x \right)} - \cot{\left(x \right)} \csc{\left(x \right)} - 1\right) + \left(\cot{\left(x \right)} + \csc{\left(x \right)}\right) \left(\cot^{2}{\left(x \right)} - \cot{\left(x \right)} \csc{\left(x \right)} + 1\right)dxdy(x)=(−cot(x)+csc(x))(−cot2(x)−cot(x)csc(x)−1)+(cot(x)+csc(x))(cot2(x)−cot(x)csc(x)+1)