6. Find the equation of the line joining the points (2, 7) and (-3, 5)

asked by guest
on Apr 04, 2025 at 4:16 pm



You asked:

Find the equation of the line through (2,7)(2, 7) and (3,5)(-3, 5).

MathBot Answer:

Standard Form:

Ax+By+C=0 \begin{aligned}Ax + By + C = 0\end{aligned} Slope=AB=y2y1x2x1AB=5732AB=25A=2,B=5 \begin{aligned} \text{Slope} &= -\frac{A}{B} \\ &= \frac{y_2-y_1}{x_2-x_1} \\ -\frac{A}{B} &= \frac{ 5 - 7 }{ -3 - 2 } \\ -\frac{A}{B} &= \frac{ -2 }{ -5 } \\ A =& 2, B = -5 \end{aligned} 2x+5y+C=02(2)+5(7)+C=0++C=04+C=35C=31 \begin{aligned} 2 x + -5 y + C &= 0 \\ 2(2) + -5(7) + C &= 0 \\ + + C &= 0 \\ 4 + C &= 35 \\ C &= -31 \end{aligned} An equation of the line in standard form is: 2x5y+31=0 2 x - 5 y + 31 = 0


Slope-Intercept Form:

y=mx+b y = m x + b Slope=y2y1x2x1Slope=5732Slope=25 \begin{aligned} \text{Slope} &= \frac{y_2-y_1}{x_2-x_1} \\ \text{Slope} &= \frac{ 5 - 7 }{ -3 - 2 } \\ \text{Slope} &= \frac{2}{5} \end{aligned} y=25x+b7=25×2+b7=45+bb=315 \begin{aligned} y &= \frac{2}{5} x + b \\ 7 &= \frac{2}{5} \times 2 + b \\ 7 &= \frac{4}{5} + b \\ b &= \frac{31}{5} \end{aligned} The slope-intercept form of the line is: y=2x5+315 y = \frac{2 x}{5} + \frac{31}{5}