(p+5)/(p^(2)+p)= (1)/(p^(2)+p) + (p-6)/(p+1)
You asked:
Solve the equation \(\frac{p + 5}{{p}^{2} + p} = \frac{1}{{p}^{2} + p} + \frac{p - 6}{p + 1}\) for the variable \(p\).
MathBot Answer:
The 2 solutions to the equation are: \[\begin{aligned}p &= \frac{7}{2} - \frac{\sqrt{65}}{2} \approx -0.53112887\\p &= \frac{7}{2} + \frac{\sqrt{65}}{2} \approx 7.5311289\end{aligned}\]