6,67*10^-11*1020/ (4*10^6)^2

asked by guest
on Nov 17, 2024 at 9:27 am



MathBot Answer:

The sum of \(6\) and \(\frac{67 \cdot {10}^{-11} \cdot 1020}{{\left( 4 \cdot {10}^{6} \right)}^{2}}\) is:

\[\begin{aligned}&=\left(6\right) + \left(\frac{67 \cdot {10}^{-11} \cdot 1020}{{\left( 4 \cdot {10}^{6} \right)}^{2}}\right) \\\\ &= 67 \cdot \frac{1}{100000000000} \cdot 1020 \cdot \frac{1}{\left(4 \cdot 10^{6}\right)^{2}} + 6 \\\\ &= \frac{480000000000000000003417}{80000000000000000000000} \\\\\end{aligned}\]


The difference of \(6\) and \(\frac{67 \cdot {10}^{-11} \cdot 1020}{{\left( 4 \cdot {10}^{6} \right)}^{2}}\) is:

\[\begin{aligned}&=\left(6\right) - \left(\frac{67 \cdot {10}^{-11} \cdot 1020}{{\left( 4 \cdot {10}^{6} \right)}^{2}}\right) \\\\ &= \left(-67\right) \frac{1}{100000000000} \cdot 1020 \cdot \frac{1}{\left(4 \cdot 10^{6}\right)^{2}} + 6 \\\\ &= \frac{479999999999999999996583}{80000000000000000000000} \\\\\end{aligned}\]


The product of \(6\) and \(\frac{67 \cdot {10}^{-11} \cdot 1020}{{\left( 4 \cdot {10}^{6} \right)}^{2}}\) is:

\[\begin{aligned}&=\left(6\right) \cdot \left(\frac{67 \cdot {10}^{-11} \cdot 1020}{{\left( 4 \cdot {10}^{6} \right)}^{2}}\right) \\\\ &= \frac{10251}{40000000000000000000000} \\\\\end{aligned}\]


The quotient of \(6\) and \(\frac{67 \cdot {10}^{-11} \cdot 1020}{{\left( 4 \cdot {10}^{6} \right)}^{2}}\) is:

\[\begin{aligned}&= \frac{\left(6\right)}{\left(\frac{67 \cdot {10}^{-11} \cdot 1020}{{\left( 4 \cdot {10}^{6} \right)}^{2}}\right)} \\\\ &= \frac{160000000000000000000000}{1139} \\\\\end{aligned}\]