1/sinx + 2^x+3 + 4/logx^3

asked by guest
on Mar 28, 2025 at 1:43 am



You asked:

Evaluate the expression: 1sin(x)+2x+3+4log(x3)\frac{1}{\sin\left( x \right)} + {2}^{x} + 3 + \frac{4}{\log\left( {x}^{3} \right)}

MathBot Answer:

Evaluated



1sin(x)+2x+3+4log(x3)=2x+3+1sin(x)+4log(x3)\displaystyle \frac{1}{\sin\left( x \right)} + {2}^{x} + 3 + \frac{4}{\log\left( {x}^{3} \right)} = 2^{x} + 3 + \frac{1}{\sin{\left(x \right)}} + \frac{4}{\log{\left(x^{3} \right)}}


Factored

1sin(x)+2x+3+4log(x3)=2xlog(x3)sin(x)+3log(x3)sin(x)+log(x3)+4sin(x)log(x3)sin(x)\frac{1}{\sin\left( x \right)} + {2}^{x} + 3 + \frac{4}{\log\left( {x}^{3} \right)} = \frac{2^{x} \log{\left(x^{3} \right)} \sin{\left(x \right)} + 3 \log{\left(x^{3} \right)} \sin{\left(x \right)} + \log{\left(x^{3} \right)} + 4 \sin{\left(x \right)}}{\log{\left(x^{3} \right)} \sin{\left(x \right)}}