2x( $x^{2}$-4) - ($x+3)^{2}$+11x + 9
You asked:
Evaluate the expression: \(2 \cdot x \cdot \left({x}^{2} - 4\right) - {\left( x + 3 \right)}^{2} + 11 x + 9\)
MathBot Answer:
Evaluated
\(\displaystyle 2 \cdot x \cdot \left({x}^{2} - 4\right) - {\left( x + 3 \right)}^{2} + 11 x + 9 = 2 x \left(x^{2} - 4\right) + 11 x - \left(x + 3\right)^{2} + 9 \)
Expanded
\[2 \cdot x \cdot \left({x}^{2} - 4\right) - {\left( x + 3 \right)}^{2} + 11 x + 9 = 2 x^{3} - x^{2} - 3 x\]
Factored
\[2 \cdot x \cdot \left({x}^{2} - 4\right) - {\left( x + 3 \right)}^{2} + 11 x + 9 = x \left(2 x - 3\right) \left(x + 1\right)\]