\int \left(x^2-2x+3\right)2^xdx
asked by guest on Mar 30, 2025 at 4:46 am
You asked:
MathBot Answer:
∫(x2−2x+3)⋅2xdx=2x(2+2log(2)+3log(2)2+x2log(2)2−2log(2)2x−2xlog(2))log(2)3+C\int{\left({x}^{2} - 2 x + 3\right) \cdot {2}^{x}}dx = \frac{2^{x} \left(2 + 2 \log{\left(2 \right)} + 3 \log{\left(2 \right)}^{2} + x^{2} \log{\left(2 \right)}^{2} - 2 \log{\left(2 \right)}^{2} x - 2 x \log{\left(2 \right)}\right)}{\log{\left(2 \right)}^{3}} + C∫(x2−2x+3)⋅2xdx=log(2)32x(2+2log(2)+3log(2)2+x2log(2)2−2log(2)2x−2xlog(2))+C