(ln(x))^14+14(ln(x))^13 for x=2

asked by guest
on Mar 28, 2025 at 7:20 am



You asked:

Calculate the value of ln(x)14+14ln(x)13{\ln\left( x \right)}^{14} + 14 {\ln\left( x \right)}^{13} when x=2x = 2.

MathBot Answer:

ln(x)14+14ln(x)13=log(2)14+14log(2)13{\ln\left( x \right)}^{14} + 14 {\ln\left( x \right)}^{13} = \log{\left(2 \right)}^{14} + 14 \log{\left(2 \right)}^{13}


log(x)14+14log(x)13=log(2)14+14log(2)13=14log(2)13+log(2)13log(2)=log(2)13log(2)+14log(2)13=log(2)14+14log(2)13\begin{aligned}\log{\left(x \right)}^{14} + 14 \log{\left(x \right)}^{13}&=\log{\left(2 \right)}^{14} + 14 \log{\left(2 \right)}^{13}\\&=14 \log{\left(2 \right)}^{13} + \log{\left(2 \right)}^{13} \log{\left(2 \right)}\\&=\log{\left(2 \right)}^{13} \log{\left(2 \right)} + 14 \log{\left(2 \right)}^{13}\\&=\log{\left(2 \right)}^{14} + 14 \log{\left(2 \right)}^{13}\end{aligned}