[(6*9.81*sin37° + 11*9.81*sin60°) - 0.25*9.81*(6*cos37° + 11*cos60°)] / (6+11)

asked by guest
on Nov 17, 2024 at 9:28 am



You asked:

Evaluate the expression: \(\frac{6 \cdot 9.81 \cdot \sin\left( 37^{\circ} \right) + 11 \cdot 9.81 \cdot \sin\left( 60^{\circ} \right) - 0.25 \cdot 9.81 \cdot \left(6 \cdot \cos\left( 37^{\circ} \right) + 11 \cdot \cos\left( 60^{\circ} \right)\right)}{6 + 11}\)

MathBot Answer:

Evaluated



\(\displaystyle \frac{6 \cdot 9.81 \cdot \sin\left( 37^{\circ} \right) + 11 \cdot 9.81 \cdot \sin\left( 60^{\circ} \right) - 0.25 \cdot 9.81 \cdot \left(6 \cdot \cos\left( 37^{\circ} \right) + 11 \cdot \cos\left( 60^{\circ} \right)\right)}{6 + 11} = - \frac{10791}{13600} - \frac{2943 \cos{\left(\frac{37 \pi}{180} \right)}}{3400} + \frac{2943 \sin{\left(\frac{37 \pi}{180} \right)}}{850} + \frac{10791 \sqrt{3}}{3400} \)


Expanded

\[\frac{6 \cdot 9.81 \cdot \sin\left( 37^{\circ} \right) + 11 \cdot 9.81 \cdot \sin\left( 60^{\circ} \right) - 0.25 \cdot 9.81 \cdot \left(6 \cdot \cos\left( 37^{\circ} \right) + 11 \cdot \cos\left( 60^{\circ} \right)\right)}{6 + 11} = \frac{2943 \sin{\left(37 \text{deg} \right)}}{850} + \frac{10791 \sin{\left(60 \text{deg} \right)}}{1700} - \frac{2943 \cos{\left(37 \text{deg} \right)}}{3400} - \frac{10791 \cos{\left(60 \text{deg} \right)}}{6800}\]