$\frac{x^2-14x+40}{x^2-6x+8}$
You asked:
Evaluate the expression: \(\frac{{x}^{2} - 14 x + 40}{{x}^{2} - 6 x + 8}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{{x}^{2} - 14 x + 40}{{x}^{2} - 6 x + 8} = \frac{x^{2} - 14 x + 40}{x^{2} - 6 x + 8} \)
Expanded
\[\frac{{x}^{2} - 14 x + 40}{{x}^{2} - 6 x + 8} = \frac{x^{2}}{x^{2} - 6 x + 8} - \frac{14 x}{x^{2} - 6 x + 8} + \frac{40}{x^{2} - 6 x + 8}\]
Factored
\[\frac{{x}^{2} - 14 x + 40}{{x}^{2} - 6 x + 8} = \frac{x - 10}{x - 2}\]