$\frac{x^2-14x+40}{x^2-6x+8}$

asked by guest
on Nov 18, 2024 at 9:16 am



You asked:

Evaluate the expression: \(\frac{{x}^{2} - 14 x + 40}{{x}^{2} - 6 x + 8}\)

MathBot Answer:

Evaluated



\(\displaystyle \frac{{x}^{2} - 14 x + 40}{{x}^{2} - 6 x + 8} = \frac{x^{2} - 14 x + 40}{x^{2} - 6 x + 8} \)


Expanded

\[\frac{{x}^{2} - 14 x + 40}{{x}^{2} - 6 x + 8} = \frac{x^{2}}{x^{2} - 6 x + 8} - \frac{14 x}{x^{2} - 6 x + 8} + \frac{40}{x^{2} - 6 x + 8}\]


Factored

\[\frac{{x}^{2} - 14 x + 40}{{x}^{2} - 6 x + 8} = \frac{x - 10}{x - 2}\]