\left(x\,e^{-2\,y}+\frac{1}{x}\,\tan\left(y\right)+2\,x\right)\,\mathrm{d}x+\left(\sec^{2}\left(y\right)\,\ln\left(y\right)-x^{2}\,e^{-2\,y}+1\right)\,\mathrm{d}y=0

asked by guest
on Nov 17, 2024 at 9:45 am



You asked:

Investigate the equation: (xe(2y)+1xtan(y)+2x)dx+(sec(y)2ln(y)x2e(2y)+1)dy=0\left(x {e}^{-\left( 2 y \right)} + \frac{1}{x} \tan\left( y \right) + 2 x\right) \cdot d x + \left({\sec\left( y \right)}^{2} \ln\left( y \right) - {x}^{2} {e}^{-\left( 2 y \right)} + 1\right) \cdot d y = 0.