(4/3,3) (−4/3,2)

asked by guest
on Apr 02, 2025 at 8:42 pm



You asked:

Find the equation of the line through (43,3)(\frac{4}{3}, 3) and (43,2)(-\frac{4}{3}, 2).

MathBot Answer:

Standard Form:

Ax+By+C=0 \begin{aligned}Ax + By + C = 0\end{aligned} Slope=AB=y2y1x2x1AB=234343AB=183A=1,B=83 \begin{aligned} \text{Slope} &= -\frac{A}{B} \\ &= \frac{y_2-y_1}{x_2-x_1} \\ -\frac{A}{B} &= \frac{ 2 - 3 }{ -\frac{4}{3} - \frac{4}{3} } \\ -\frac{A}{B} &= \frac{ -1 }{ - \frac{8}{3} } \\ A =& 1, B = - \frac{8}{3} \end{aligned} 1x+83y+C=01(43)+83(3)+C=0++C=043+C=8C=8+43 \begin{aligned} 1 x + - \frac{8}{3} y + C &= 0 \\ 1(\frac{4}{3}) + - \frac{8}{3}(3) + C &= 0 \\ + + C &= 0 \\ \frac{4}{3} + C &= 8 \\ C &= -8 + \frac{4}{3} \end{aligned} An equation of the line in standard form is: 3x8y+20=0 3 x - 8 y + 20 = 0


Slope-Intercept Form:

y=mx+b y = m x + b Slope=y2y1x2x1Slope=234343Slope=38 \begin{aligned} \text{Slope} &= \frac{y_2-y_1}{x_2-x_1} \\ \text{Slope} &= \frac{ 2 - 3 }{ -\frac{4}{3} - \frac{4}{3} } \\ \text{Slope} &= \frac{3}{8} \end{aligned} y=38x+b3=38×43+b3=12+bb=52 \begin{aligned} y &= \frac{3}{8} x + b \\ 3 &= \frac{3}{8} \times \frac{4}{3} + b \\ 3 &= \frac{1}{2} + b \\ b &= \frac{5}{2} \end{aligned} The slope-intercept form of the line is: y=3x8+52 y = \frac{3 x}{8} + \frac{5}{2}