(0.06250.0625cosa0.2522)(\frac{0.0625 - 0.0625 cos a}{0.252^2}) + (10.345cosa0.654)2(\frac{1-0.345 cos a}{0.654})^2

asked by guest
on Jan 12, 2025 at 6:59 pm



You asked:

Evaluate the expression: 0.06250.0625cos(a)0.2522+(10.345cos(a)0.654)2\frac{0.0625 - 0.0625 \cos\left( a \right)}{{0.252}^{2}} + {\left( \frac{1 - 0.345 \cos\left( a \right)}{0.654} \right)}^{2}

MathBot Answer:

Evaluated



0.06250.0625cos(a)0.2522+(10.345cos(a)0.654)2=(500327115cos(a)218)215625cos(a)15876+1562515876\displaystyle \frac{0.0625 - 0.0625 \cos\left( a \right)}{{0.252}^{2}} + {\left( \frac{1 - 0.345 \cos\left( a \right)}{0.654} \right)}^{2} = \left(\frac{500}{327} - \frac{115 \cos{\left(a \right)}}{218}\right)^{2} - \frac{15625 \cos{\left(a \right)}}{15876} + \frac{15625}{15876}


Expanded

0.06250.0625cos(a)0.2522+(10.345cos(a)0.654)2=13225cos2(a)47524489930625cos(a)188622756+626640625188622756\frac{0.0625 - 0.0625 \cos\left( a \right)}{{0.252}^{2}} + {\left( \frac{1 - 0.345 \cos\left( a \right)}{0.654} \right)}^{2} = \frac{13225 \cos^{2}{\left(a \right)}}{47524} - \frac{489930625 \cos{\left(a \right)}}{188622756} + \frac{626640625}{188622756}


Factored

0.06250.0625cos(a)0.2522+(10.345cos(a)0.654)2=25(2099601cos2(a)19597225cos(a)+25065625)188622756\frac{0.0625 - 0.0625 \cos\left( a \right)}{{0.252}^{2}} + {\left( \frac{1 - 0.345 \cos\left( a \right)}{0.654} \right)}^{2} = \frac{25 \cdot \left(2099601 \cos^{2}{\left(a \right)} - 19597225 \cos{\left(a \right)} + 25065625\right)}{188622756}