(0.0625−0.0625cosa0.2522)(\frac{0.0625 - 0.0625 cos a}{0.252^2})(0.25220.0625−0.0625cosa) + (1−0.345cosa0.654)2(\frac{1-0.345 cos a}{0.654})^2(0.6541−0.345cosa)2
asked by guest on Jan 12, 2025 at 6:59 pm
You asked:
MathBot Answer:
0.0625−0.0625cos(a)0.2522+(1−0.345cos(a)0.654)2=(500327−115cos(a)218)2−15625cos(a)15876+1562515876\displaystyle \frac{0.0625 - 0.0625 \cos\left( a \right)}{{0.252}^{2}} + {\left( \frac{1 - 0.345 \cos\left( a \right)}{0.654} \right)}^{2} = \left(\frac{500}{327} - \frac{115 \cos{\left(a \right)}}{218}\right)^{2} - \frac{15625 \cos{\left(a \right)}}{15876} + \frac{15625}{15876} 0.25220.0625−0.0625cos(a)+(0.6541−0.345cos(a))2=(327500−218115cos(a))2−1587615625cos(a)+1587615625
0.0625−0.0625cos(a)0.2522+(1−0.345cos(a)0.654)2=13225cos2(a)47524−489930625cos(a)188622756+626640625188622756\frac{0.0625 - 0.0625 \cos\left( a \right)}{{0.252}^{2}} + {\left( \frac{1 - 0.345 \cos\left( a \right)}{0.654} \right)}^{2} = \frac{13225 \cos^{2}{\left(a \right)}}{47524} - \frac{489930625 \cos{\left(a \right)}}{188622756} + \frac{626640625}{188622756}0.25220.0625−0.0625cos(a)+(0.6541−0.345cos(a))2=4752413225cos2(a)−188622756489930625cos(a)+188622756626640625
0.0625−0.0625cos(a)0.2522+(1−0.345cos(a)0.654)2=25⋅(2099601cos2(a)−19597225cos(a)+25065625)188622756\frac{0.0625 - 0.0625 \cos\left( a \right)}{{0.252}^{2}} + {\left( \frac{1 - 0.345 \cos\left( a \right)}{0.654} \right)}^{2} = \frac{25 \cdot \left(2099601 \cos^{2}{\left(a \right)} - 19597225 \cos{\left(a \right)} + 25065625\right)}{188622756}0.25220.0625−0.0625cos(a)+(0.6541−0.345cos(a))2=18862275625⋅(2099601cos2(a)−19597225cos(a)+25065625)