$(\frac{0.0625 - 0.0625 cos a}{0.252^2})$ + $(\frac{1-0.345 cos a}{0.654})^2$

asked by guest
on Jan 12, 2025 at 6:59 pm



You asked:

Evaluate the expression: \(\frac{0.0625 - 0.0625 \cos\left( a \right)}{{0.252}^{2}} + {\left( \frac{1 - 0.345 \cos\left( a \right)}{0.654} \right)}^{2}\)

MathBot Answer:

Evaluated



\(\displaystyle \frac{0.0625 - 0.0625 \cos\left( a \right)}{{0.252}^{2}} + {\left( \frac{1 - 0.345 \cos\left( a \right)}{0.654} \right)}^{2} = \left(\frac{500}{327} - \frac{115 \cos{\left(a \right)}}{218}\right)^{2} - \frac{15625 \cos{\left(a \right)}}{15876} + \frac{15625}{15876} \)


Expanded

\[\frac{0.0625 - 0.0625 \cos\left( a \right)}{{0.252}^{2}} + {\left( \frac{1 - 0.345 \cos\left( a \right)}{0.654} \right)}^{2} = \frac{13225 \cos^{2}{\left(a \right)}}{47524} - \frac{489930625 \cos{\left(a \right)}}{188622756} + \frac{626640625}{188622756}\]


Factored

\[\frac{0.0625 - 0.0625 \cos\left( a \right)}{{0.252}^{2}} + {\left( \frac{1 - 0.345 \cos\left( a \right)}{0.654} \right)}^{2} = \frac{25 \cdot \left(2099601 \cos^{2}{\left(a \right)} - 19597225 \cos{\left(a \right)} + 25065625\right)}{188622756}\]