For each of the following samples that were given an experimental​ treatment, test whether the samples represent populations that are different from the general​ population: (a) a sample of 10 with a mean of 46​, ​(b) a sample of 1 with a mean of 50. The general population of individuals has a mean of 42​, a standard deviation of 6​, and follows a normal curve. For each​ sample, carry out a Z test using the five steps of hypothesis testing with a​ two-tailed test at the 0.05 significance​ level, and make a drawing of the distributions involved.​ (c) Figure the​ 95% confidence interval for parts​ (a) and​ (b).Assume that the distribution of means is approximately normal. Use the cutoff sample score on the comparison distribution at which the null hypothesis should be rejected from part​ (a). Determine the​ sample's Z score on the comparison distribution.

Zequals

  

enter your response here ​(Type an integer or a decimal rounded to two decimal places as​ needed.)

asked by guest
on Nov 18, 2024 at 4:45 am



Mathbot Says...

I wasn't able to parse your question, but the HE.NET team is hard at work making me smarter.