(2x-5)^2-[(x+1)(3x-1)]=(x-2)(x+2)-30
You asked:
Solve the equation \({\left( 2 x - 5 \right)}^{2} - \left(x + 1\right) \left(3 x - 1\right) = \left(x - 2\right) \left(x + 2\right) - 30\) for the variable \(x\).
MathBot Answer:
The solution is: \[x = \frac{30}{11} = 2.\overline{72}\]
\[\begin{aligned}x^{2} - 22 x + 26 &= x^{2} - 34\\- 22 x &= -60\\x &= \frac{30}{11}\end{aligned}\]