\sqrt{\frac{12}{x}-x}+\sqrt{12-x}-\frac{12}{x}
You asked:
Evaluate the expression: \(\sqrt{\frac{12}{x} - x} + \sqrt{12 - x} - \frac{12}{x}\)
MathBot Answer:
Evaluated
\(\displaystyle \sqrt{\frac{12}{x} - x} + \sqrt{12 - x} - \frac{12}{x} = \sqrt{12 - x} + \sqrt{- x + \frac{12}{x}} - \frac{12}{x} \)
Expanded
\[\sqrt{\frac{12}{x} - x} + \sqrt{12 - x} - \frac{12}{x} = \sqrt{12 - x} + \sqrt{- x + \frac{12}{x}} - \frac{12}{x}\]
Factored
\[\sqrt{\frac{12}{x} - x} + \sqrt{12 - x} - \frac{12}{x} = \frac{x \sqrt{12 - x} + x \sqrt{- x + \frac{12}{x}} - 12}{x}\]