\sqrt{\frac{12}{x}-x}+\sqrt{12-x}-\frac{12}{x}

asked by guest
on Jan 11, 2025 at 7:45 am



You asked:

Evaluate the expression: \(\sqrt{\frac{12}{x} - x} + \sqrt{12 - x} - \frac{12}{x}\)

MathBot Answer:

Evaluated



\(\displaystyle \sqrt{\frac{12}{x} - x} + \sqrt{12 - x} - \frac{12}{x} = \sqrt{12 - x} + \sqrt{- x + \frac{12}{x}} - \frac{12}{x} \)


Expanded

\[\sqrt{\frac{12}{x} - x} + \sqrt{12 - x} - \frac{12}{x} = \sqrt{12 - x} + \sqrt{- x + \frac{12}{x}} - \frac{12}{x}\]


Factored

\[\sqrt{\frac{12}{x} - x} + \sqrt{12 - x} - \frac{12}{x} = \frac{x \sqrt{12 - x} + x \sqrt{- x + \frac{12}{x}} - 12}{x}\]