(2a² - 3ab + b²) (a-b) (a+b)
You asked:
Evaluate the expression: \(\left(2 {a}^{2} - 3 a b + {b}^{2}\right) \cdot \left(a - b\right) \cdot \left(a + b\right)\)
MathBot Answer:
Evaluated
\(\displaystyle \left(2 {a}^{2} - 3 a b + {b}^{2}\right) \cdot \left(a - b\right) \cdot \left(a + b\right) = \left(a - b\right) \left(a + b\right) \left(2 a^{2} - 3 a b + b^{2}\right) \)
Expanded
\[\left(2 {a}^{2} - 3 a b + {b}^{2}\right) \cdot \left(a - b\right) \cdot \left(a + b\right) = 2 a^{4} - 3 a^{3} b - a^{2} b^{2} + 3 b^{3} a - b^{4}\]
Factored
\[\left(2 {a}^{2} - 3 a b + {b}^{2}\right) \cdot \left(a - b\right) \cdot \left(a + b\right) = \left(2 a - b\right) \left(a - b\right)^{2} \left(a + b\right)\]