cosx - sinx = 1

asked by guest
on Jan 22, 2025 at 1:51 pm



You asked:

Solve the equation \(\cos\left( x \right) - \sin\left( x \right) = 1\) for the variable \(x\).

MathBot Answer:

The real solutions are: \[\begin{aligned}x &= \left\{2 \pi n\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n\; \middle|\; n \in \mathbb{Z}\right\}\\x &= \left\{\frac{\pi \left(3 + 4 n\right)}{2}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 4.712389\; \middle|\; n \in \mathbb{Z}\right\}\end{aligned}\]