cosx - sinx = 1
You asked:
Solve the equation \(\cos\left( x \right) - \sin\left( x \right) = 1\) for the variable \(x\).
MathBot Answer:
The real solutions are: \[\begin{aligned}x &= \left\{2 \pi n\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n\; \middle|\; n \in \mathbb{Z}\right\}\\x &= \left\{\frac{\pi \left(3 + 4 n\right)}{2}\; \middle|\; n \in \mathbb{Z}\right\} \approx \left\{6.2831853 n + 4.712389\; \middle|\; n \in \mathbb{Z}\right\}\end{aligned}\]