125+897=

asked by guest
on Apr 02, 2025 at 8:10 pm



You asked:

Evaluate the expression: 125+897125 + 897

MathBot Answer:

125+897=1022 125 + 897=1022


0111215+008971022 \begin{aligned} \overset{\mathtt{1}}{\phantom{0}}\overset{\mathtt{1}}{\mathtt{1}}\overset{\mathtt{1}}{\mathtt{2}}\mathtt{5}\\ \mathtt{+\phantom{0}}\phantom{0}\mathtt{8}\mathtt{9}\mathtt{7}\\ \hline \mathtt{1}\mathtt{0}\mathtt{2}\mathtt{2} \end{aligned}

22 is the digit in the 10010^{0} place. 5×100+7×100=12×100=1×101+2×1005 \times 10^{0} + 7 \times 10^{0} = 12 \times 10^{0} = 1 \times 10^{1} + 2 \times 10^{0}.1×1011 \times 10^{1} carries to the 10110^{1} place.

22 is the digit in the 10110^{1} place. 1×101+2×101+9×101=12×101=1×102+2×1011 \times 10^{1} + 2 \times 10^{1} + 9 \times 10^{1} = 12 \times 10^{1} = 1 \times 10^{2} + 2 \times 10^{1}.1×1021 \times 10^{2} carries to the 10210^{2} place.

00 is the digit in the 10210^{2} place. 1×102+1×102+8×102=10×102=1×103+0×1021 \times 10^{2} + 1 \times 10^{2} + 8 \times 10^{2} = 10 \times 10^{2} = 1 \times 10^{3} + 0 \times 10^{2}.1×1031 \times 10^{3} carries to the 10310^{3} place.

11 is the digit in the 10310^{3} place. 1×103+0×103+0×103=1×1031 \times 10^{3} + 0 \times 10^{3} + 0 \times 10^{3} = 1 \times 10^{3} .