=ln(218*-0.02+3.1)*0.9/0.9

asked by guest
on Nov 15, 2024 at 7:58 am



You asked:

Evaluate the expression: ln(2180.02+3.1)0.90.9\frac{\ln\left( 218 \cdot -0.02 + 3.1 \right) \cdot 0.9}{0.9}

MathBot Answer:

ln(2180.02+3.1)0.90.9=log(6350)+iπ\frac{\ln\left( 218 \cdot -0.02 + 3.1 \right) \cdot 0.9}{0.9} = \log{\left(\frac{63}{50} \right)} + i \pi


ln(2180.02+3.1)0.90.9=log(21812100+3+110)9101910=log(218150+3+110)9101910=log(21850+3+110)9101910=log(10925+3+110)9101910=log(3425+110)9101910=log(6350)9101910=(πi+log(6350))9101910=(πi+log(6350))99=(9log(6350)+9πi)19=πi+log(6350)\begin{aligned}\frac{\ln\left( 218 \cdot -0.02 + 3.1 \right) \cdot 0.9}{0.9}&=\log{\left(218 \cdot -1 \cdot \frac{2}{100} + 3 + \frac{1}{10} \right)} \cdot \frac{9}{10} \cdot \frac{1}{\frac{9}{10}}\\&=\log{\left(218 \cdot \frac{-1}{50} + 3 + \frac{1}{10} \right)} \cdot \frac{9}{10} \cdot \frac{1}{\frac{9}{10}}\\&=\log{\left(\frac{-218}{50} + 3 + \frac{1}{10} \right)} \cdot \frac{9}{10} \cdot \frac{1}{\frac{9}{10}}\\&=\log{\left(- \frac{109}{25} + 3 + \frac{1}{10} \right)} \cdot \frac{9}{10} \cdot \frac{1}{\frac{9}{10}}\\&=\log{\left(- \frac{34}{25} + \frac{1}{10} \right)} \cdot \frac{9}{10} \cdot \frac{1}{\frac{9}{10}}\\&=\log{\left(- \frac{63}{50} \right)} \cdot \frac{9}{10} \cdot \frac{1}{\frac{9}{10}}\\&=\left(\pi \cdot i + \log{\left(\frac{63}{50} \right)}\right) \cdot \frac{9}{10} \cdot \frac{1}{\frac{9}{10}}\\&=\left(\pi \cdot i + \log{\left(\frac{63}{50} \right)}\right) \cdot \frac{9}{9}\\&=\left(9 \cdot \log{\left(\frac{63}{50} \right)} + 9 \cdot \pi \cdot i\right) \cdot \frac{1}{9}\\&=\pi \cdot i + \log{\left(\frac{63}{50} \right)}\end{aligned}