x^3-x^2-8x-12=0

asked by guest
on Apr 07, 2025 at 8:57 am



You asked:

Solve the equation x3x28x12=0{x}^{3} - {x}^{2} - 8 x - 12 = 0 for the variable xx.

MathBot Answer:

The 3 solutions to the equation are: x=13+19927+27433+25919927+274333.8691878x=2743+199273225182743+199273+13+i(253182743+199273+32743+1992732)1.4345939+1.0214531ix=2743+199273225182743+199273+13+i(32743+1992732+253182743+199273)1.43459391.0214531i\begin{aligned}x &= \frac{1}{3} + \sqrt[3]{\frac{199}{27} + \frac{2 \sqrt{74}}{3}} + \frac{25}{9 \sqrt[3]{\frac{199}{27} + \frac{2 \sqrt{74}}{3}}} \approx 3.8691878\\x &= - \frac{\sqrt[3]{\frac{2 \sqrt{74}}{3} + \frac{199}{27}}}{2} - \frac{25}{18 \sqrt[3]{\frac{2 \sqrt{74}}{3} + \frac{199}{27}}} + \frac{1}{3} + i \left(- \frac{25 \sqrt{3}}{18 \sqrt[3]{\frac{2 \sqrt{74}}{3} + \frac{199}{27}}} + \frac{\sqrt{3} \sqrt[3]{\frac{2 \sqrt{74}}{3} + \frac{199}{27}}}{2}\right) \approx -1.4345939 + 1.0214531 i\\x &= - \frac{\sqrt[3]{\frac{2 \sqrt{74}}{3} + \frac{199}{27}}}{2} - \frac{25}{18 \sqrt[3]{\frac{2 \sqrt{74}}{3} + \frac{199}{27}}} + \frac{1}{3} + i \left(- \frac{\sqrt{3} \sqrt[3]{\frac{2 \sqrt{74}}{3} + \frac{199}{27}}}{2} + \frac{25 \sqrt{3}}{18 \sqrt[3]{\frac{2 \sqrt{74}}{3} + \frac{199}{27}}}\right) \approx -1.4345939 -1.0214531 i\end{aligned}


ii is the imaginary unit, defined as i2=1i^2 = -1.