$\sqrt{\32}$ $\sqrt{\48}$ / $\sqrt{\8}$ $\sqrt{\12}$
You asked:
MathBot Answer:
\[\frac{\sqrt{32} \cdot \sqrt{48}}{\sqrt{8} \cdot \sqrt{12}} = 4\]
\[\begin{aligned}\frac{\sqrt{32} \cdot \sqrt{48}}{\sqrt{8} \cdot \sqrt{12}}& = \sqrt{32} \cdot \sqrt{48} \cdot \frac{1}{\sqrt{8} \cdot \sqrt{12}}\\& = 4 \cdot \sqrt{2} \cdot \sqrt{48} \cdot \frac{1}{\sqrt{8} \cdot \sqrt{12}}\\& = 4 \cdot \sqrt{2} \cdot 4 \cdot \sqrt{3} \cdot \frac{1}{\sqrt{8} \cdot \sqrt{12}}\\& = 4 \cdot \sqrt{2} \cdot 4 \cdot \sqrt{3} \cdot \frac{1}{2 \cdot \sqrt{2} \cdot \sqrt{12}}\\& = 4 \cdot \sqrt{2} \cdot 4 \cdot \sqrt{3} \cdot \frac{1}{2 \cdot \sqrt{2} \cdot 2 \cdot \sqrt{3}}\\& = 4 \cdot \sqrt{2} \cdot 4 \cdot \sqrt{3} \cdot \frac{1}{4 \cdot \sqrt{6}}\\& = 4 \cdot \sqrt{2} \cdot \frac{1}{2} \cdot \sqrt{2}\\& = 4\end{aligned}\]