(100+10)(6283)/(100+1.1)
You asked:
Evaluate the expression: \(\frac{\left(100 + 10\right) \cdot 6283}{100 + 1.1}\)
MathBot Answer:
\[\frac{\left(100 + 10\right) \cdot 6283}{100 + 1.1} = \frac{6911300}{1011} \approx 6836.10286844708209693372898120672601\]
\[\begin{aligned}\frac{\left(100 + 10\right) \cdot 6283}{100 + 1.1}& = \left(100 + 10\right) \cdot 6283 \cdot \frac{1}{100 + 1 + \frac{1}{10}}\\& = 110 \cdot 6283 \cdot \frac{1}{100 + 1 + \frac{1}{10}}\\& = 110 \cdot 6283 \cdot \frac{1}{101 + \frac{1}{10}}\\& = 110 \cdot 6283 \cdot \frac{1}{\frac{1011}{10}}\\& = 110 \cdot \frac{62830}{1011}\\& = \frac{6911300}{1011}\end{aligned}\]